
Random access to files

1

 Random access files are files in which records can
be accessed in any order
◦ Also called direct access files
◦ More efficient than sequential access files

2

 Real-time applications require immediate response
◦ Example: respond to customer query about a bill
◦ Sequencing through records for account is time-

intensive
 Random (immediate) access meets real-time need
◦ Directly read from or write to desired record

3

 Consider the zip format. A ZIP archive
contains files and is typically compressed to
save space. It also contain a directory entry
at the end that indicates where the various
files contained within the ZIP archive begin

4

 Open the ZIP archive.
 Search through the ZIP archive until you

locate the file you want to extract.
 Extract the file.
 Close the ZIP archive.

On an average, we have to read half of the
zip archive to find the required file

5

 Open the ZIP archive.
 Seek to the directory entry and locate the

entry for the file you want to extract from
the ZIP archive.

 Seek (backward) within the ZIP archive to
the position of the file to extract.

 Extract the file.
 Close the ZIP archive.

This is more efficient as you read only the
directory entry and file that you want to
extract.

6

 The RandomAccessFile class contains the
same read(), write() and close() methods as
Input and OutputStream

 Also contains seek() that lets you select a
beginning position within the file before
reading or writing data

 Includes capabilities for reading and writing
primitive-type values, byte arrays and
strings

7

 fseek
◦ Sets file position pointer to a specific position
◦ fseek(pointer, offset, symbolic_constant);
 pointer – pointer to file
 offset – file position pointer (0 is first location)
 symbolic_constant – specifies where in file we are

reading from
 SEEK_SET – seek starts at beginning of file
 SEEK_CUR – seek starts at current location in file
 SEEK_END – seek starts at end of file

8

The C library function long int ftell(FILE *stream) returns the current file
position of the given stream.
#include <stdio.h>
int main ()

{ FILE *fp;
int len;
fp = fopen("file.txt", "r");

if(fp == NULL)
{
perror ("Error opening file");
return(-1);

}
fseek(fp, 0, SEEK_END);
len = ftell(fp);
fclose(fp);
printf("Total size of file.txt = %d bytes\n", len);

return(0); }

9

	Lecture 7
	Random Access Files
	Need for Random Access Files
	Example
	Accessing a specific file using sequential access
	Accessing a specific file using random access
	RandomAccessFiles class
	Slide Number 8
	ftell
	Assignment

