
Random access to files

1

 Random access files are files in which records can
be accessed in any order
◦ Also called direct access files
◦ More efficient than sequential access files

2

 Real-time applications require immediate response
◦ Example: respond to customer query about a bill
◦ Sequencing through records for account is time-

intensive
 Random (immediate) access meets real-time need
◦ Directly read from or write to desired record

3

 Consider the zip format. A ZIP archive
contains files and is typically compressed to
save space. It also contain a directory entry
at the end that indicates where the various
files contained within the ZIP archive begin

4

 Open the ZIP archive.
 Search through the ZIP archive until you

locate the file you want to extract.
 Extract the file.
 Close the ZIP archive.

On an average, we have to read half of the
zip archive to find the required file

5

 Open the ZIP archive.
 Seek to the directory entry and locate the

entry for the file you want to extract from
the ZIP archive.

 Seek (backward) within the ZIP archive to
the position of the file to extract.

 Extract the file.
 Close the ZIP archive.

This is more efficient as you read only the
directory entry and file that you want to
extract.

6

 The RandomAccessFile class contains the
same read(), write() and close() methods as
Input and OutputStream

 Also contains seek() that lets you select a
beginning position within the file before
reading or writing data

 Includes capabilities for reading and writing
primitive-type values, byte arrays and
strings

7

 fseek
◦ Sets file position pointer to a specific position
◦ fseek(pointer, offset, symbolic_constant);
 pointer – pointer to file
 offset – file position pointer (0 is first location)
 symbolic_constant – specifies where in file we are

reading from
 SEEK_SET – seek starts at beginning of file
 SEEK_CUR – seek starts at current location in file
 SEEK_END – seek starts at end of file

8

The C library function long int ftell(FILE *stream) returns the current file
position of the given stream.
#include <stdio.h>
int main ()

{ FILE *fp;
int len;
fp = fopen("file.txt", "r");

if(fp == NULL)
{
perror ("Error opening file");
return(-1);

}
fseek(fp, 0, SEEK_END);
len = ftell(fp);
fclose(fp);
printf("Total size of file.txt = %d bytes\n", len);

return(0); }

9

	Lecture 7
	Random Access Files
	Need for Random Access Files
	Example
	Accessing a specific file using sequential access
	Accessing a specific file using random access
	RandomAccessFiles class
	Slide Number 8
	ftell
	Assignment

