
Pointers to Functions

 While many programming languages
support the concept of pointers to data,
only a few enable you to define pointers to
code -- that is, pointers that point to
functions.

 Originally introduced in C, pointers to
functions are widely used in C++

 Unfortunately, their cumbersome syntax
baffles both novices and experienced
programmers.

 C does not require that pointers only point to
data, it is possible to have pointers to
functions

 Functions occupy memory locations therefore
every function has an address just like each
variable

 Useful when alternative functions maybe used
to perform similar tasks on data (eg sorting)

 One common use is in passing a function as a
parameter in a function call.

 Can pass the data and the function to be
used to some control function

 Greater flexibility and better code reuse

 A function pointer is nothing else than a
variable, it must be defined as usual.

Eg,
int (*funcPointer) (int, char, int);
funcPointer is a pointer to a function.
 The extra parentheses around

(*funcPointer) is needed because there are
precedence relationships in declaration just
as there are in expressions

 It is optional to use the address operator &
infront of the function’s name

 When you mention the name of a function
but are not calling it, there’s nothing else
you could possibly be trying to do except
for generating a pointer to it

 Similar to the fact that a pointer to the first
element of an array is generated
automatically when an array appears in an
expression

//assign an address to the function pointer
int (*funcPointer) (int, char, int);

int firstExample (int a, char b, int c){
printf(“ Welcome to the first example”);
return a+b+c;

}
funcPointer= firstExample; //assignment
funcPointer=&firstExample; //alternative

using address operator

 Can use the (==) operator
//comparing function pointers

If (funcPointer == &firstExample)
printf (“pointer points to firstExample”);

 There are two alternatives
1) Use the name of the function pointer
2) Can explicitly dereference it
int (*funcPointer) (int, char, int);
// calling a function using function pointer
int answer= funcPointer (7, ’A’ , 2);
int answer=(* funcPointer) (7, ’A’ , 2);

 C treats pointers to functions just like
pointers to data therefore we can have
arrays of pointers to functions

 This offers the possibility to select a
function using an index

Eg.
suppose that we’re writing a program that
displays a menu of commands for the user
to choose from. We can write functions that
implement these commands, then store
pointers to the functions in an array:

void (*file_cmd[]) (void) =
{ new_cmd,

open_cmd,
close_cmd,
save_cmd ,
save_as_cmd,
print_cmd,
exit_cmd

};

If the user selects a command between 0 and 6, then we can subscript
the file_cmd array to find out which function to call

file_cmd[n]();

// prints tables showing the values of cos,sin
#include <math.h>
#include <stdio.h>
void tabulate(double (*f)(double), double first, double last, double incr);
main()
{
double final, increment, initial;

printf (“Enter initial value: “);
scanf (“%lf”, &initial);

printf (“Enter final value: “);
scanf (%lf”, &final);

printf (“Enter increment : “);
scanf (%lf”, &increment);

Printf(“\n x cos(x) \n”
“ ---------- -----------\n”);

tabulate(cos, initial,final,increment);

Printf(“\n x sin (x) \n”
“ ---------- -----------\n”);

tabulate(sin, initial,final,increment);

return 0;
}

// when passed a pointer f prints a table showing the value of f
void tabulate(double (*f) (double), double first, double last,

double incr)
{

double x;
int i, num_intervals;
num_intervals = ceil ((last -first) /incr);
for (i=0; i<=num_intervals; i++){

x= first +i * incr;
printf(“%10.5f %10.5f\n”, x , (*f) (x));

}
}

Enter initial value: 0
Enter final value: .5
Enter increment: .1

X cos(x)
---- -------- -----------
0.00000 1.00000
0.10000 0.99500
0.20000 0.98007
0.30000 0.95534
0.40000 0.92106
0.50000 0.87758

X sin(x)
---- -------- -----------
0.00000 0.00000
0.10000 0.09983
0.20000 0.19867
0.30000 0.29552
0.40000 0.38942
0.50000 0.47943

	Lecture-3
	Introduction
	What are function Pointers?
	Why do we need function Pointers?
	Define a Function Pointer
	Assign an address to a Function Pointer
	Assign an address to a Function Pointer
	Comparing Function Pointers
	Calling a function using a Function Pointer
	Arrays of Function Pointers
	
	�Trigonometric Functions
	�Trigonometric Functions
	
	Nptel Link
	Assignment

