
Pointers to Functions



 While many programming languages 
support the concept of pointers to data, 
only a few enable you to define pointers to 
code -- that is, pointers that point to 
functions.

 Originally introduced in C, pointers to 
functions are widely used in C++

 Unfortunately, their cumbersome syntax 
baffles both novices and experienced 
programmers. 



 C does not require that pointers only point to 
data, it is possible to have pointers to 
functions

 Functions occupy memory locations therefore 
every function has an address just like each 
variable



 Useful when alternative functions maybe used 
to perform similar tasks on data (eg sorting)

 One common use is in passing a function as a 
parameter in a function call.

 Can pass the data and the function to be 
used to some control function

 Greater flexibility and better code reuse



 A function pointer is nothing else than a 
variable, it must be defined as usual.

Eg,
int (*funcPointer) (int, char, int);
funcPointer is a pointer to a function.
 The extra parentheses around 

(*funcPointer) is needed because there are 
precedence relationships in declaration just 
as there are in expressions 



 It is optional to use the address operator & 
infront of the function’s name

 When you mention the name of a function 
but are not calling it, there’s nothing else 
you could possibly be trying to do except 
for generating a pointer to it

 Similar to the fact that a pointer to the first 
element of an array is generated 
automatically when an array appears in an 
expression



//assign an address to the function pointer
int (*funcPointer) (int, char, int);

int firstExample ( int a, char b, int c){
printf(“ Welcome to the first example”);
return a+b+c;

}
funcPointer= firstExample; //assignment
funcPointer=&firstExample; //alternative 

using address operator



 Can use the (==) operator
//comparing function pointers

If (funcPointer == &firstExample)
printf (“pointer points to firstExample”);



 There are two alternatives
1) Use the name of the function pointer
2) Can explicitly dereference it
int (*funcPointer) (int, char, int);
// calling a function using function pointer
int answer= funcPointer (7, ’A’ , 2 );
int answer=(* funcPointer) (7, ’A’ , 2 );



 C treats pointers to functions just like 
pointers to data therefore we can have 
arrays of pointers to functions

 This offers the possibility to select a 
function using an index

Eg.
suppose that we’re writing a program that 
displays a menu of commands for the user 
to choose from. We can write functions that 
implement these commands, then store 
pointers to the functions in an array:



void (*file_cmd[]) (void) = 
{ new_cmd, 

open_cmd, 
close_cmd, 
save_cmd , 
save_as_cmd,
print_cmd,
exit_cmd

};

If the user selects a command between 0 and 6, then we can subscript 
the file_cmd array to find out which function to call

file_cmd[n]();



// prints tables showing the values of cos,sin 
#include <math.h>
#include <stdio.h>
void tabulate(double (*f)(double), double first, double last, double incr);
main()
{
double final, increment, initial;

printf (“Enter initial value: “);
scanf (“%lf”, &initial);

printf (“Enter final value: “);
scanf (%lf”, &final);

printf (“Enter increment : “);
scanf (%lf”, &increment);

Printf(“\n    x   cos(x) \n”
“  ---------- -----------\n”);

tabulate(cos, initial,final,increment);

Printf(“\n     x    sin (x) \n”
“  ---------- -----------\n”);

tabulate(sin, initial,final,increment);

return 0;
}



// when passed a pointer f prints a table showing the value of f
void tabulate(double (*f) (double), double first, double last, 

double incr)
{

double x;
int i, num_intervals;
num_intervals = ceil ( (last -first) /incr );
for (i=0; i<=num_intervals; i++){

x= first +i * incr;
printf(“%10.5f %10.5f\n”, x , (*f) (x));

}
}



Enter initial value: 0
Enter final value: .5
Enter increment: .1

X cos(x)
---- -------- -----------
0.00000 1.00000
0.10000 0.99500
0.20000 0.98007
0.30000 0.95534
0.40000 0.92106
0.50000 0.87758

X sin(x)
---- -------- -----------
0.00000 0.00000
0.10000 0.09983
0.20000 0.19867
0.30000 0.29552
0.40000 0.38942
0.50000 0.47943


	Lecture-3
	Introduction
	What are function Pointers?
	Why do we need function Pointers?
	Define a Function Pointer
	Assign an address to a Function Pointer
	Assign an address to a Function Pointer
	Comparing Function Pointers
	Calling a function using a Function Pointer
	Arrays of Function Pointers
	   
	�Trigonometric Functions
	�Trigonometric Functions
	   
	Nptel Link
	Assignment



