
Pre-Processor,Command Line Argument

A unique feature of c language is the pre-processor.
A program can use the tools provided by pre-
processor to make his program easy to read, modify,
portable and more efficient.
Pre-processor is a program that processes the code
before it passes through the compiler. It operates
under the control of pre-processor command lines
and directives.

Source
Program Compiler

C
Preprocessor Object Program

Directives Function
#define Defines a macro substitution
#undef Undefined a macro
#include Specifies the files to be included
#ifdef Tests for a macro definition
#endif Specifies the end of #if
#ifndef Tests whether a macro is not defined
#if Tests a compile-time condition
#else Specifies alternatives when #if test fails

Preprocessor directives follow the special syntax rules
and begin with the symbol #and do not require any
semicolon at the end. A set of commonly used
preprocessor directives

The preprocessor directives can be divided
into three categories
1. Macro substitution division
2. File inclusion(Including) division
3. Compiler control division

MACRO SUBSTITUTION
This is a process of replacing an identifier of a C
program by a constant or a symbolic constant. This
can be accomplished by the directive #define. The
#definition is a macro definition statement.
Syntax:

#define identifier CSCE
Where,
#define A hash define directive
Identifier A valid C identifier, conventionally written in
upper case
CSCE May be constant, symbolic constant or
expression.

Example:
1.#define MARKS 100
2.#define AVERAGE 72.20
3.#define PI 3.142
Example Program
#include<stdio.h>
#define PI 3.142
main()
{

float rad,area;
printf(“enter the radius”);
scanf(“%f”,&rad);
area= PI*rad*rad;
printf(“area of a circle=%f”,area);

}
In this program, the macro PI is defined as 3.142. hence,
whenever PI occurs in a C program, it is replaced by the value
3.142.

FILE INCLUSION
This is a process of inserting external files containing
functions or macro definitions into the C program. An
external file containing function can be include in a C
program using the #include directive.
Syntax:

include filename
Where,
include Preprocessor directive for file inclusion
Identifier Name of the file containing the required
function definition to be include in a C program.

FILE INCLUSION
There is no space between #symbol and include. But,there must be at
least one blank space between #include and filename. Filename can be
written within a pair of a angle brackets or double quotation marks.

<filename>

Example:
1.#include <stdio.h>
2.#include <math.h>
3.#include “Grade.c”
When the filename is written within a pair of angle ,the specified file is
searched only in the standard directories .But, when the filename is
written in a pair of double quotes ,the specified file is first searched in
the current directory and then in the standard directories.

CONDITIONAL DIRECTIVES
C processor provides a conditional compilation
directive which is used to select alternate segments of
code in a C program depending upon the condition.
Suppose there are two different version of a program,
and they are more alike than are different. It will be
redudant if you maintain both versions .
We can overcome this problem by simply including
both version in a single program. then, it would be
possible to select a particular version depending on
the requirement.

CONDITIONAL DIRECTIVES
Example:
Main()
{
…………………..
#ifdef VERSION1
{
……..
…….. Code of VERSION 1
……
}
#else
{
…………
………. Code of VERSION 2
……

……….
}
#indif
………
}
If we want to execute VERSION1 of a program then the following statement must be included in this program.

#define VERSION1

 So far, we have been defining the main() function to
receive no arguments.

 Actually, the main() function can receive two
arguments.

 To do that, the main() function should be defined as
below.

 This is how arguments can be passed in at the
command line.

int main(int argc, char *argv[])
{ …

}

C language programs also creates an executable file(.exe).this
executable file has the same name as the program file name and
stores the executable code of the program. The creation of executable
files saves the user to compile a program again and again.
Other advantage with executable file is their execution on DOS
prompt. And they does not required C-editor .

We can execute any of the C program from DOS prompt .But the use
of Command Line Arguments .
Command Line Arguments is much useful for filehandling program
execution because the file name can be supplied at command
prompt.

Now ,how main() function would recognize /accept the file name
from the DOS prompt to operate?

So, file name supplied at command prompt are used as parameter
by the main()function and these parameters are called as
“Command Line Arguments”.

These arguments are captured by the main () funcation of the
program and supplied to the programming statements for future
processing.

For example:
A programmer creates a program file “Readf” to read the
contents of a file. Then the following command line may be
used to invoke this program.

C:\>Readf SFILE.TXT
The “Readf” file contains executable code of the
program(Readf.exe) and the filename “SFILE.TXT” will be
accepted by main() function as the command line argument.

For this purpose ,main() function can take two arguments
called argc and argv

 The argument variable argc is an integer variable and acts like
“argument counter” which counts the number of arguments
on the command line

For example:
According to last example ,the variable argc contains numeric
value 2.

 The argument variable argv is a character array of pointers so
called “argument vector”. Each subscript of this array points
to each command line argument respectively.

For example:
According to last example ,the variable argv is the array of two
variable (equals to the value of argc) and point the command line
arguments as follows:

Argv[0]- points to “Readf”
Argv[1]- points to “SFILE.TXT”

int main(int argc, char* argv[])
{
……………;
……………;
……………;
}
argc

Number of arguments (including program name)
argv

Array of char*s (that is, an array of ‘c’ strings)
argv[0]: = program name
◦ argv[1]: = first argument
◦ …
◦ argv[argc-1]: last argument

	Lecture 8
	The Pre-processor
	Preprocesses directives
	Preprocesses directives
	The Preprocessor
	The Preprocessor
	The Preprocessor
	The Preprocessor
	The Preprocessor
	The Preprocessor
	The main() function
	Command Line Arguments
	Command Line Arguments
	Command Line Arguments
	Command Line Arguments
	Command Line Arguments
	Assignment

