
Dynamic Memory Allocation

The process of allocating memory at run time is known as dynamic
memory allocation.
C does not Inherently have this facility, there are four library routines
known as “memory management functions” that can be used for
allocating and freeing memory during program execution.
These functions are:
1.malloc()
2.Calloc()
3.Realloc()
4.Free()
These functions are defined either in the header file “alloc.h”or in
stdlib.h” or in both

Memory allocation process associated with a C
program. The RAM can divided into 4 areas.

Code Area

Static and global variables

Free memory or Heap

Local variable or stack

Memory allocation process associated with a C program. The RAM can
divided into 4 areas.

1. Local variables are stored in area called stack.

1. The code area is the region in the RAM where your C program
instructions, after they are translated into machine language are
stored.

1. There is a separate area for storing the global and static variables.

1. The free memory area is called the heap. The size of heap keeps
changing when program is executed due to creation and deletion
of variables.

1) malloc in C :
The function most commonly used for dynamic memory
allocation is malloc(). The syntax of the function is

malloc(x);
Where x is an unsigned integer which stands for the
number of bytes you want to draw from the heap. The
function returns a pointer, if your request is successful.
Otherwise malloc return a void pointer.

If you want it to point to any datatype of data you should
write

(data_tpye*)malloc(x);

1) malloc in C :
consider the following ststement

ptr=(int*)malloc(sizeof(int));

In this example ,a memory space equivalent to size of an int byte is reserved and the address of
first byte of memory allocated is assigned to the pointer ptr of type of int.

e.g.
ptr= (char*) malloc(5);

Allocate 5 byte of space for the pointer ptr of type char as shown
ptr

address of first byte

We can also use malloc to allocate memory for complex data type such as
structures

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
void main()
{
int a,*ptr;
a=10;
ptr=(int*)malloc(a*sizeof(int));
ptr=a;
printf("%d",ptr);
free(ptr);
getch();
}

Sample Program :
malloc.c

Program Explanation :
1.#include<stdio.h> header file is included
because, the C in-built statement printf we used
in this program comes under stdio.h header
files.
2.#include<conio.h> is used because the C in-
built function getch() comes under conio.h
header files.
3.stdlib.h is used because malloc() comes under
it.
4.int type variable a and pointer *ptr are
declared.
5.Variable a is assigned a value of 10.
6.malloc() is used to allocate memory to pointer
ptr.
7.The size given through malloc() to ptr is
sizeof(int).
8.Now ptr is assigned the value of a. ptr=a; so
the value 10 is assigned to ptr, for which, we
dynamically allocated memory space using
malloc.
9.The value in ptr is displayed using printf
10.Then allocated memory is freed using the C
in-built function free().

1) Calloc in C :
Function calloc (),like malloc() allocates memory in a
dynamic manner. It takes ,as arguments, two valus

p=(t*)calloc(n,b)
the above statement allocate n blocks of memory ,each
block with b bytes. If there is not enough space, a NULL
pointer is returned.

this function is useful for storing arrays. If each element
of an array requires b bytes and the array is required to
store K elements we can allocate memory by the
following statement

p=(t*)calloc(k,b)

pointer=(data_type*)calloc(no of memory blocks, size of each block in bytes);

Syntax :

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
void main()
{
int *ptr,a[6]={1,2,3,4,5,6};
int i;
ptr=(int*)calloc(a[6]*sizeof(int),2);
for(i=0;i<7;i++)
{
printf("\n %d",*ptr+a[i]);
}

free(ptr);
getch();
}

Sample Program : calloc.c

Explanation :
1.#include<stdio.h> header file is included because, the C in-built
statement printf we used in this program comes under stdio.h header
files.
2.#include<conio.h> is used because the C in-built function getch()
comes under conio.h header files.
3.stdlib.h is used because malloc() comes under it.
4.A Pointer *ptr of type int and array a[6] is declared.
5.Array a[6] is assigned with 6 values.
6.Another variable i of type int is declared.
7.Calloc() is used to allocate memory for ptr. 6 blocks of memory is
allocated with each block having 2 bytes of space.
8.Now variable i is used in for to cycle the loop 6 times on incremental
mode.
9.On each cycle the data in allocated memory in ptr is printed using
*ptr+a[i].
10.Then the memory space is freed using free(ptr).

1) realloc in C :
we can change the memory size already
allocated with the help of the funcation realloc.

This process is called the reallocation of the
memory. For example, if the original allocation is
done on the statement

ptr= malloc(size)
Then the reallocation of the space may be done by

the statement
ptr= malloc(ptr, newsize)

1) Free()in C :
the memory must be returned to the heap, when
it is no longer required. This is done with free()
function . The syntax of the statement is

free (ptr)
Where ptr is the pointer to a block of memory which

has been allocated from the heap on request.
The function is void in nature and does not
return anything.

	Lecture 4
	Dynamic Memory Allocation
	 Memory Allocation Process
	 Memory Allocation Process
	 Memory Allocation Process
	 Memory Allocation Process
	Slide Number 7
	 Memory Allocation Process
	Slide Number 9
	Slide Number 10
	 Memory Allocation Process
	 Memory Allocation Process
	Nptel Link
	Assignment

