
Pointer

Different from other normal variables which can store values.
pointers are special variables that can hold the address of a variable. Since they
store memory address of a variable, the pointers are very commonly said to “point
to variables”.
Lets try to understand the concept.

As shown in the above diagram:
A normal variable ‘var’ has a memory address of 1001 and holds a value 50.
A pointer variable has its own address 2047 but stores 1001, which is the address
of the variable ‘var’

In the above declaration :

pointer-type : It specifies the type of pointer. It can be int,char,
float etc. This type specifies the type of variable whose address
this pointer can store.
pointer-name : It can be any name specified by the user.
Professionally, there are some coding styles which every code
follows. The pointer names commonly start with ‘p’ or end with
‘ptr’

A pointer is declared as :

<pointer type> *<pointer-name>

An example of a pointer declaration can be :

char *chptr;

In the above declaration,
‘char’ signifies the pointer type,
 chptr is the name of the pointer
 while the asterisk ‘*’ signifies that ‘chptr’ is a
pointer variable.

A pointer is initialized in the following way :

<pointer declaration(except semicolon)> = <address of a
variable>

OR
<pointer declaration> <name-of-pointer> = <address of a

variable>

Note that the type of variable above should be same as
the pointer type.(Though this is not a strict rule but for
beginners this should be kept in mind).

For example :

char ch = 'c';
char *chptr = &ch; //initialize

OR

char ch = 'c';
char *chptr; chptr = &ch //initialize

In the code above, we declared a character variable ch which stores the
value ‘c’. Now, we declared a character pointer ‘chptr’ and initialized it
with the address of variable ‘ch’.

Note that the ‘&’ operator is used to access the address of any type of
variable.

A pointer can be used in two contexts.
Context 1: For accessing the address of the variable whose memory
address the pointer stores.
Again consider the following code :

char ch = 'c';
char *chptr = &ch;

Now, whenever we refer the name ‘chptr’ in the code after the above two
lines, then compiler would try to fetch the value contained by this pointer
variable, which is the address of the variable (ch) to which the pointer
points. i.e. the value given by ‘chptr’ would be equal to ‘&ch’.
For example :

char *ptr = chptr;

The value held by ‘chptr’ (which in this case is the address of the
variable ‘ch’) is assigned to the new pointer ‘ptr’.

Context 2: For accessing the value of the variable whose
memory address the pointer stores.
Continuing with the piece of code used above :

char ch = 'c';
char t;
char *chptr = &ch;
t = *chptr;

We see that in the last line above, we have used ‘*’ before the
name of the pointer. What does this asterisk operator do?
Well, this operator when applied to a pointer variable
name(like in the last line above) yields the value of the variable
to which this pointer points. Which means, in this case ‘*chptr’
would yield the value kept at address held by chptr. Since
‘chptr’ holds the address of variable ‘ch’ and value of ‘ch’ is
‘c’, so ‘*chptr’ yeilds ‘c’.

Consider the following code :
#include <stdio.h>
int main(void) OUTPUT :

$./pointers
[c], [20], [1.200000], [I], [I am a string]

{
char ch = 'c';
char *chptr = &ch;

int i = 20;
int *intptr = &i;

float f = 1.20000;
float *fptr = &f;

char *ptr = "I am a string";

printf("\n [%c], [%d], [%f], [%c], [%s]\n", *chptr, *intptr, *fptr, *ptr, ptr);
return 0;
}

Consider the following code :
#include<stdio.h>
struct st
{ int a;
char ch;
};

int main(void)
{

struct st obj;
struct st *stobj = &obj;

stobj->a = 5;
stobj->ch = 'a';

printf("\n [%d] [%c]\n", stobj->a, stobj->ch);
return 0;

}

OUTPUT:
[5] [a]

In the above code, we have declared a pointer stobj of
type ‘struct st’. Now since the pointer type is a
structure, so the address it points to has to be of a
‘struct st’ type variable(which in this case is ‘obj’).
Other interesting part is how structure elements are
accessed using pointer variable ‘stobj’. Yes, When
dealing with pointer objects, its a standard to use
arrow operator -> instead of ‘.’ operator(which would
have been used, had we used ‘obj’ to access the
structure elements).

	Lecture 1
	What are Pointers?�
	��How to Declare a Pointer?��
	��How to Declare a Pointer?��
	��How to initialize a Pointer?���
	��How to initialize a Pointer?���
	��How to Use a Pointer?���
	��How to Use a Pointer?���
	�� ��An Example of C Pointers����
	�� ��Pointers as Structure Objects�����
	�� ��Pointers as Structure Objects�����
	Nptel Link
	Assignment

