

 The switch statement provides another way to
decide which statement to execute next

 The switch statement evaluates an expression,
then attempts to match the result to one of
several possible cases

 Each case contains a value and a list of
statements

 The flow of control transfers to statement
associated with the first case value that matches

 Often a break statement is used as the last
statement in each case's statement list

 A break statement causes control to transfer
to the end of the switch statement

 If a break statement is not used, the flow of
control will continue into the next case

 Sometimes this may be appropriate, but often
we want to execute only the statements
associated with one case

 An example of a switch statement:
switch (option)
{

case 'A':
aCount++;
break;

case 'B':
bCount++;
break;

case 'C':
cCount++;
break;

default:
otherCount++;
break;

}

 A switch statement can have an optional
default case

 The default case has no associated value and
simply uses the reserved word default

 If the default case is present, control will
transfer to it if no other case value matches

 If there is no default case, and no other value
matches, control falls through to the
statement after the switch

 The expression of a switch statement must
result in an integral type, meaning an integer
(byte, short, int,) or a char

 It cannot be a floating point value (float or
double)

 The implicit test condition in a switch
statement is equality

 You cannot perform relational checks with a
switch statement

 The general syntax of a switch statement is:

switch (expression)
{

case value1 :
statement-list1

case value2 :
statement-list2

case value3 :
statement-list3

case ...

}

switch
and
case
are

reserved
words

If expression
matches value2,

control jumps
to here

	Lecture 4��Switch Statement
	The switch Statement
	The switch Statement
	The switch Statement
	The switch Statement
	The switch Statement
	The switch Statement
	Assignment

