
Decision Making Statements

 A circuit quite simply allows one out of two choices
to be made depending on its inputs

 When decisions are made in a computer program,
they are simply the result of a computation in which
the final result is either TRUE or FALSE

 The value zero (0) is considered to be FALSE by
C++. Any positive or negative value is considered to
be TRUE

 Practically all computer programs, when modeled with
a flowchart, demonstrate that branching occurs within
their algorithms.

1. if statement
2. switch statement
3. ? conditional operator statement
4. goto statement

 Relational operators provide the tools with
which programs make decisions with true
and false evaluations

== equal to NOTE: this is two equals symbols next
to each other, not to be confused with the assignment
operator, =
> greater than
< less than
>= greater than or equal to
<= less than or equal to
!= not equal to

 When complex decisions must be coded into an
algorithm, it may be necessary to "chain together"
a few relational expressions (that use relational
operators)

 This is done with logical operators (also called
Boolean operators.)

&& is the logical AND operator
|| is the logical OR operator
! is the logical NOT operator

 Use this truth table to determine the results of the
logical operators. In this table, 1 represents TRUE
and 0 represents FALSE.

 Note that the ! symbol (the logical NOT operator)
changes a TRUE to a FALSE.

AND OR NOT
A B A && B A B A || B A !A
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

 A program can instruct a computer to
compare two items and do something based
on a match or mismatch which, in turn,
redirect the sequence of programming
instructions.
◦ There are two forms:
◦ IF-THEN
◦ IF-THEN-ELSE

 Simple if statement
 if … else statement
 Nested if … else statement
 else..if ladder

Test
condition p

false true

Entry

Exit
True

statement a

 Practically all computer languages have some sort
of if structure. In C++, the if structure is a one-way
selection structure:

if (number == 3)
{

Printf("The value of number is 3“);;
}

 IF structures use a control expression to determine
if the code in the braces is to be executed or not

 You must use the AND operator (&&) to form
a compound relational expression:

if (0 < number && number < 10)
{

printf(‘’number is greater than 0
but less than 10”);

}

 Place a semicolon at the end of each
statement within the braces, which can
contain many executable statements

 Use curly braces around the body of an IF
structure even if there is only one statement

false true

Entry

Exit

Test
condition p

“true”
statement a

“false”
statement a

if (test expression)
{
True-block statements;

}
else

{
False-block statements;

}

next statement;

 Two-way selection structure since either the block of
code after the "if" part will be executed or the block
of code after the "else" part will be executed

 The “If" part is executed if the control expression is
TRUE while the "else" part is executed if the "if" part
is FALSE, guaranteeing one part of the expression to
be executed or the other

if (condition 1)
statement 1;

else if (condition 2)
statement 2;

else if (condition 3)
statement 3;

else if (condition n)
statement n;

else
default statement;

statement x;

 As soon as a true condition is found, the statement
associated with it is executed and control is transferred
to the statement after the ladder

 The else clause is optional just as it is with an if
statement.
if (number > 10)

{
printf(“ number is greater than 10.");
}

else if (number <= 9 && number >= 6)
{

printf(“number" is greater than 5
and less than 10.“);
}

else
{

printf(“number must be less than 6.");
}

number = number + 1;

 If structures and if/else statements can be
nested within one another in order to model
complex decision structures.
◦ Use the braces and semicolons properly when

coding such structures.

if (test condition 1)
{ // true-block1 statements

if (test condition 2)
{
true-block2 statements;

}
else
{
false-block2 statements;

}
}

else
{
false-block1 statements;
}

 General form:
conditional expression ? exp-1:exp-2 ;
 The conditional expression is evaluated first. If the

result is non-zero, exp-1 is evaluated and is returned
as the value of the conditional expression. Otherwise,
exp-2 is evaluated and its value is returned

f=(c = = 'y') ? 1: 0;

 Unconditional branching
GOTO label;
…
label: statement;

 Not recommended but may be used
occasionally

	Lecture 3
	Decision Making In Computers
	Programming & Decisions
	Decision Making in C++
	Using Relational Operators
	Using Logical Operators
	Truth Tables
	Compare and Branch
	Levels of Complexity for if
	IF-THEN
	Use the “IF” structure
	Compound Conditionals
	Coding IF Structures
	IF…ELSE
	General Form
	The If … Else statement
	if… else if Ladder: General Form
	if/else if statement
	Nested If Statements
	General Form
	Conditional Operator
	GOTO Statement
	Nptel Link
	Assignment

