Lecture 2

Operators \& Expressions

Definition

"An operator is a symbol (+,-,",/) that directs the computer to perform certain mathematical or logical manipulations and is usually used to manipulate data and variables"
Ex: $a+b$

Operators in C

1. Arithmetic operators
2. Relational operators
3. Logical operators
4. Assignment operators
5. Increment and decrement operatio
6. Conditional operators
7. Bitwise operators
8. Special operators

Arithmetic operators

Operator	example	Meaning
+	$\mathrm{a}+\mathrm{b}$	Addition -unary
-	$\mathrm{a}-\mathrm{b}$	Subtraction- unary
$*$	$\mathrm{a} * \mathrm{~b}$	Multiplication
$/$	a / b	Division
$\%$	$\mathrm{a} \% \mathrm{~b}$	Modulo division- remainder

Relational Operators

Operator	Meaning
$<$	Is less than
$<=$	Is less than or equal to
$>$	Is greater than
$>=$	Is greater than or equal to
$==$	Equal to
$!=$	Not equal to

Logical Operators

Operator	Meaning	
$\& \&$	Logical AND	
$\\|$	Logical OR	
$!$	Logical NOT	

Logical expression or a compound relational expression-

An expression that combines two or more relational expressions
Ex: if ($a==b$ \& \& $b==c$)

Trurh Table

a	b	Value of the expression		
		a \&\& b	$\mathrm{a} \\| \mathrm{b}$	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	1	

Assignment operators

Syntax:
vop = exp;

Where $\mathrm{v}=$ variable,
op $=$ shorthand assignment operator exp $=$ expression
$E x: x=x+3$

$$
x+=3
$$

Shorthand Assignment operators

Simple assignment operator

Shorthand operator

$a+=1$
$a-=1$
$a *=m+n$
$a /=m+n$
$a \%=b$

Increment \& Decrement Operators

C supports 2 useful operators namely

1. Increment ++
2. Decrement - operators

The ++ operator adds a value 1 to the opend
The - operator subtracts 1 from the operand
++a or a++
--a or a--

ules for ++ \& -- operators

These require variables as their operands
2. When postfix either ++ or - is used with the variable in a given expression, the expression is evaluated first and then it is incremented or decremented by one
3. When prefix either ++ or - is used with the variable in a given expression, it is incremented or decremented by one first and then the expression is evaluated with the new value

Examples for ++ \& -- operators

Let the value of $a=5$ and $b=++a$ th $\mathrm{a}=\mathrm{b}=6$
Let the value of $a=5$ and $b=a++$ th $\mathrm{a}=5$ but $\mathrm{b}=6$
i.e.:

1. a prefix operator first adds 1 to the operand and then the result is assigned to the variable on the left
2. a postfix operator first assigns the value to the variable on left and then increments the operand.

Conditional operators

Syntax:
exp1 ? exp2 : exp3
Where expl,exp2 and exp3 are expressior
Working of the ? Operator:
Exp1 is evaluated first, if it is nonzero(1/true) then the expression2 is evaluated and this becomes the value of the expression,
If expl is false(0/zero) exp3 is evaluated and its value becomes the value of the expression
Ex: $m=2$;

$$
\begin{aligned}
& \mathrm{n}=3 \\
& \mathrm{r}=(\mathrm{m}>\mathrm{n}) ? \mathrm{~m}: \mathrm{n} ;
\end{aligned}
$$

Bitwise operators

These operators allow manipulation of data at the bit level

Operator	Meaning
$\&$	Bitwise AND
\perp	Bitwise OR
\wedge	Bitwise exclusive OR
\ll	Shift left
\gg	Shift right

Special operators

1. Comma operator (,)
2. sizeof operator - sizeof()
3. Pointer operators - (\& and *)
4. Member selection operators - (. and $->$)

Arithmetic Expressions

Algebraic expression

$a \times b-c$	$\mathrm{a}^{\star} \mathrm{b}-\mathrm{c}$
$(\mathrm{m}+\mathrm{n})(\mathrm{x}+\mathrm{y})$	$(\mathrm{m}+\mathrm{n})^{\star}(\mathrm{x}+\mathrm{y})$
$\left[\frac{a b}{c}\right]$	$\mathrm{a}^{*} \mathrm{~b} / \mathrm{c}$
$3 \mathrm{x}^{2}+2 \mathrm{x}+1$	$3^{\star} \mathrm{x}^{\star} \mathrm{x}+2^{\star} \mathrm{x}+1$
$\frac{a}{b}$	a / b
$\mathrm{s}=\frac{a+b+c}{2}$	$\mathrm{~S}=(\mathrm{a}+\mathrm{b}+\mathrm{c}) / 2$

$(m+n) *(x+y)$
$3^{*} x^{*} x+2^{*} x+1$
a/b
$S=(a+b+c) / 2$

Arithmetic Expressions

Algebraic expression

area=	$\sqrt{s(s-a)(s-b)(s-c)}$	area=sqrt(s*(s-a)*(s-b)*(s-c))
	$\sin \left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)$	$\sin \left(\mathrm{b} / \mathrm{sqrt}\left(a^{*} a+b * b\right)\right.$)

$$
\tau_{1}=\sqrt{\left\{\frac{\sigma_{x}-\sigma_{y}}{2}\right\}+\tau x y^{2}}
$$

$$
\tau_{1}=\sqrt{\left\{\frac{\sigma_{x}-\sigma_{y}}{2}\right\}^{2}+\tau x y^{2}}
$$

$$
y=\frac{\alpha+\beta}{\sin \theta}+|x|
$$

C expression

$$
\frac{\operatorname{area}=\operatorname{sqrt}\left(s^{\star}(s-a)^{\star}(s-b)^{\star}(s-c)\right)}{\sin \left(b / s q r t\left(a^{*} a+b * b\right)\right)}
$$

tow1=sqrt((rowx-rowy)/2+tow*x $\left.{ }^{*} y^{*} y\right)$
tow1=sqrt(pow((rowx-rowy)/2,2)+tow*x*y*y)
$y=(a l p h a+b e t a) / \sin (t h e t a * 3.1416 / 180)+a b s(x)$

Precedence of operators

BODMAS RULE-
Brackets of Division Multiplication Addition Subtraction Brackets will have the highest precedence and have to be evaluated first, then comes of , then comes
division, multiplication, addition and finally subtraction.
C language uses some rules in evaluating the expressions
and they r called as precedence rules or sometimes also referred to as hierarchy of operations, with some operators
with highest precedence and some with least.
The 2 distinct priority levels of arithmetic operators in c are-
Highest priority: * / \%
Lowestrakiority : + -

Rules for evaluation of expression

1. First parenthesized sub expression from left to right are evaluated.
2. If parentheses are nested, the evaluation begins with the innermost sub expression
3. The precedence rule is applied in determining the order of application of operators in evaluating sub expressions
4. The associatively rule is applied when 2 or more operators of the same precedence level appear in a sub expression.
5. Arithmetic expressions are evaluated from left to right using the rules of precedence
6. When parentheses are used, the expressions within parentheses assume highest priority

Hierarchy of operators

Operator	Description	Associativity
(), []	Function call, array element reference	Left to Right
,,,,+-++-- $,!,,{ }^{*}, \&$	Unary plus, minus, increment, decrement, logical negation, 1's complement, pointer reference, address	Right to Left
*, /, \%	Multiplication, division, modulus	Left to Right

Example 1

Evaluate $\times 1=(-b+\operatorname{sqrt}(b * b-4 * a * c)) /(2 * a) @ a=1$, $b=-5, c=6$
$=(-(-5)+\operatorname{sqrt}((-5)(-5)-4 * 1 * 6)) /(2 * 1)$
$=(5+\operatorname{sqrt}((-5)(-5)-4 * 1 * 6)) /(2 * 1)$
$=(5+\operatorname{sqrt}(25-4 * 1 * 6)) /(2 * 1)$
$=(5+\operatorname{sqrt}(25-4 * 6)) /(2 * 1)$
$=(5+\operatorname{sqrt}(25-24)) /(2 * 1)$
$=(5+\operatorname{sqrt}(1)) /(2 * 1)$
$=(5+1.0) /(2 * 1)$
$=(6.0) /(2 * 1)$
$=6.0 / 2=3.0$

Example 2

Evaluate the expression when $\mathrm{a}=4$

$$
\begin{gathered}
b=a-++a \\
=a-5 \\
=5-5 \\
=0
\end{gathered}
$$

