
Structure

A structure is a user defined data type. We know that arrays can be used to represent
a group of data items that belong to the same type, such as int or float. However we
cannot use an array if we want to represent a collection of data items of different
types using a single name. A structure is a convenient tool for handling a group of
logically related data items.

The syntax of structure declaration is

struct structure_name
{
type element 1;
type element 2;
……………..
type element n;
};

In structure declaration the keyword struct appears first, this followed
by structure name. The member of structure should be enclosed
between a pair of braces and it defines one by one each ending with a
semicolon. It can also be array of structure. There is an enclosing brace
at the end of declaration and it end with a semicolon.

We can declare structure variables as follows
struct structure_name var1,var2,…..,var n;

For Example:
To store the names, roll number and total mark of a student you can declare 3 variables.
To store this data for more than one student 3 separate arrays may be declared. Another
choice is to make a structure. No memory is allocated when a structure is declared. It just
defines the “form” of the structure. When a variable is made then memory is allocated.
This is equivalent to saying that there's no memory for “int” , but when we declare an
integer that is. int var; only then memory is allocated. The structure for the above-
mentioned case will look like
struct student
{
int rollno;
char name[25];
float totalmark;
};

We can now declare structure variables stud1, stud2 as follows
struct student stud1,stud2;

Thus, the stud1 and stud2 are structure variables of type student. The above structure
can hold information of 2 students.
It is possible to combine the declaration of structure combination with that of the
structure variables, as shown below.
struct structure_name
{
type element 1;
type element 2;
……………..
type element n;
}var1,var2,…,varn;

The following single declaration is equivalent to the two declaration presented in the
previous example.
struct student
{
int roll no;
char name[25];
float total mark;
} stud1, stud2;
The different variable types stored in a structure are called its members.
 The structure member can be accessed by using a dot (.) operator, so the dot
operator is known as structure member operator.

Structure members can be initialized at declaration. This much the
same manner as the element of an array; the initial value must appear
in the order in which they will be assigned to their corresponding
structure members, enclosed in braces and separated by commas .The
general form is

struct stucture_name var={val1,val2,val3…..};

Example:
#include <stdio.h>
#include<conio.h>
int main()
{
struct student
{
char name;
int rollno;
float totalmark;
};
struct student stud1={"Ashraf",1,98};
struct student stud3= {"Rahul",3,97};
struct student stud2={"Vineeth",2,99};
clrscr();
printf("STUDENTS DETAILS:\nRoll
number:%d\n\nName:%s\n\nTotel
mark:%.2f\n",stud1.rollno,stud1.name,stud1.totalmark);
printf("\nRoll number:%d\n\nName:%s\n\nTotel
mark:%.2f\n",stud2.rollno,stud2.name,stud2.totalmark);
printf("\nRoll number:%d\n\nName:%s\n\nTotel
mark:%.2f\n",stud3.rollno,stud3.name,stud3.totalmark);
getch();
return 0;
}

A structure can be passed as a single variable
to the function.

The structure should be defined outside the
main() when they are used along with function.

The field and member data should be same
throught the program either in main() or in any
function.

	Lecture 13
	Structure�
	Structure�
	Structure�
	Structure�
	Structure�
	Initializing Structure Members��
	Initializing Structure Members��
	Structure and Functions
	Nptel Link
	Assignment

