
Strings

 Characters in C consist of any printable or
nonprintable character in the computer’s
character set including lowercase letters,
uppercase letters, decimal digits, special
characters and escape sequences.

 A character is usually stored in the computer as
an 8-bits (1 byte) integer.

 The integer value stored for a character
depends on the character set used by the
computer on which the program is running.

2

 There are two commonly used character sets:
◦ ASCII (American Standard Code for Information

Interchange)
◦ EBCDIC (Extended Binary Coded Decimal

Interchange Code)

3

 char num = 1 and char num = ‘1’ are not
the same.

 char num = 1 is represented in the
computer as 00000001.

 char num = ‘1’ on the other hand is
number 49 according to the ASCII
character set. Therefore, it is represented
in the computer as 00110001.

4

Difference Between an Integer Digit and a Character Digit

#include <stdio.h>

void main(void)
{

char my_A = 'A';
char my_Z = 'Z';
char my_a = 'a';
char my_z = 'z';

printf("\nASCII value for A is %d", my_A);
printf("\nASCII value for Z is %d",my_Z);
printf("\nASCII value for a is %d", my_a);
printf("\nASCII value for z is %d",my_z);

printf("\n");
printf("\n65 in ASCII represents %c",65);
printf("\n90 in ASCII represents %c",90);
printf("\n97 in ASCII represents %c",97);
printf("\n122 in ASCII represents %c",122);

}

5

ASCII value for A is 65
ASCII value for Z is 90
ASCII value for a is 97
ASCII value for z is 122

65 in ASCII represents A
90 in ASCII represents Z
97 in ASCII represents a
122 in ASCII represents z

6

#include <stdio.h>
void main(void)
{

char ch;
printf("enter a character: ");
scanf("%c", &ch);
if (ch >= 'A' && ch <= 'Z')
{

printf("\ncapital
letter\n");
}

}

7

#include <stdio.h>

void main(void)
{

char ch;

printf("enter a character: ");
scanf("%c", &ch);

if (ch >= 65 && ch <=
(65+26))
{

printf("\ncapital
letter\n");
}

}

equivalent
to

 A string in C is an array of characters ending
with the null character (‘\0’). It is written
inside a double quotation mark (“ ”)

 A string may be assigned (in a declaration) to
either a char array or to a char pointer:
◦ char color[] = “green”; OR
◦ char *color = “green”;

8

 A string can also be defined by specifying
the individual characters:
◦ char color[] = {‘g’, ‘r’, ‘e’, ‘e’, ‘n’, ‘\0’};

 A string is accessed via a pointer to the
first character in the string.

 In memory, these are the characters
stored:

9

g r e e n \0

 Notice that even though there are only five
characters in the word ‘green’, six characters
are stored in the computer. The last character,
the character ‘\0’, is the NULL character which
indicates the end of the string.

 Therefore, if an array of characters is to be
used to store a string, the array must be large
enough to store the string and its terminating
NULL character.

10

 We can initialize string variables at compile
time such as;
◦ char name[10] = “Arris”;
◦ This initialization creates the following spaces in

storage :

11

A r r i s \0 \0 \0 \0 \0
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

 If we happen to declare a string like this:
char my_drink[3] = “tea”;

 We will get the following syntax error:
error C2117: 'tea' : array bounds overflow

 Instead, we need to at least declare the array
with (the size of the string + 1) to
accommodate the null terminating character
‘\0’.

char my_drink[4] = “tea”;

12

#include <stdio.h>

void main(void) /* a program that counts the number of characters in a
string */

{

char sentence[] = "I love C language";

int i, count = 0;

for (i = 0; sentence[i] != '\0'; i++)
{

count++;
}

printf(“%s has %d characters including the whitespace", sentence,
count);

}

13

Sample output:
I love C language has 17 characters including the
whitespace

 Standard Functions Input
◦ scanf()
◦ gets()

 Standard Functions Output
◦ printf()
◦ puts()

 Use scanf function together with the format
specifier %s for interactive input string. (no
whitespace character)

 If the string to be read as an input has
embedded whitespace characters, use standard
gets function.

14

String :
A string is a collection of characters. Strings are always
enclosed in double quotes as "string constant".
Strings are used in string handling operations such as,

Counting the length of a string.
Comparing two strings.
Copying one string to another.
Converting lower case string to upper case.
Converting upper case string to lower case.
Joining two strings.
Reversing string.

Declaration :
The string can be declared as follow :
Syntax:

char string_nm[size];
Example:

char name[50];

String Structure :
When compiler assigns string to character array
then it automatically supplies null character ('\0') at
the end of string. Thus, size of string = original
length of string + 1.

char name[7];
name = "TECHNO"

Read Strings :
To read a string, we can use scanf() function with format
specifier %s.

char name[50];
scanf("%s",name);

The above format allows to accept only string which does
not have any blank space, tab, new line.
Write Strings :
To write a string, we can use printf() function with format
specifier %s.

char name[50];
scanf("%s",name);
printf("%s",name);

string.h header file :
'string.h' is a header file which includes the declarations, functions,
constants of string handling utilities. These string functions are
widely used today by many programmers to deal with string
operations.
Some of the standard member functions of string.h header files are,
Function Name Description
strlen - Returns the length of a string.
strlwr - Returns upper case letter to
lower case.
strupr - Returns lower case letter to
upper case.
strcat - Concatenates two string.
strcmp - Compares two strings.
strrev - Returns length of a string.
strcpy - Copies a string from source to
destination.

Program :
/* Program to demonstrate string.h header file
working.
#include <stdio.h>
#include <conio.h>
#include <string.h>
void main()
{

char str[50];
clrscr();
printf("\n\t Enter your name : ");
gets(str);
printf("\nLower case of string:

%s",strlwr(str));
printf("\nUpper case of string:

%s",strupr(str));
printf("\nReverse of string: %s",strrev(str));
printf("\nLength of String: %d",strlen(str));
getch();

}

Output :

Enter your name : Technoexam
Lower case of string:
technoexam Upper case of
string: TECHNOEXAM Reverse of
string: MAXEONHCET Length of
String: 10_

	Lecture 9
	Fundamentals of Characters and Strings
	Fundamentals of Characters and Strings
	Slide Number 4
	Example: ASCII character
	Sample output
	Example cont…
	Fundamentals of Characters and Strings
	Fundamentals of Characters and Strings
	Fundamentals of Characters and Strings
	Briefly review about strings :
	Fundamentals of Characters and Strings
	Example: string and ‘\0’
	Briefly review about strings :
	String Handling in C :
	String Handling in C :
	String Handling in C :
	String Handling in C :
	String handling functions :
	String handling functions :
	Nptel Link

