
VOLTAGE REGULATOR

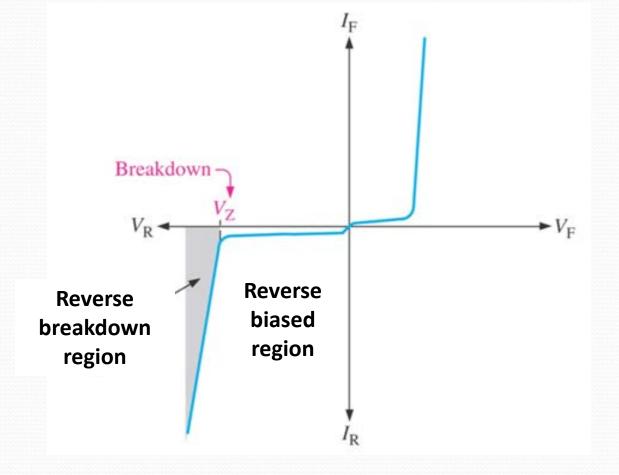
Voltage Regulator

- Zener diode is a voltage regulator device because it is able to fix the output voltage at a constant value (DC voltage).
- *R_S* is to limit the zener current, *I_Z* so that it is less than the maximum current, *I_{ZM}* (to avoid the zener diode from broken).

Zener as Regulator

A simple regulator circuit

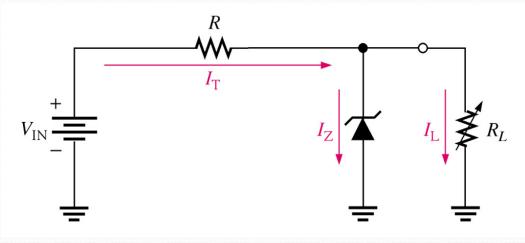
A regulator circuit with load resistance

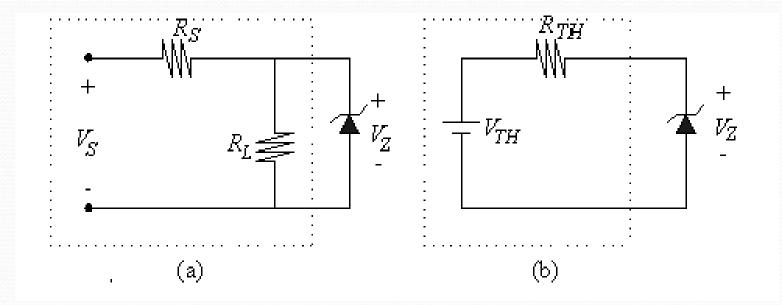

Voltage Regulator

- How to determine whether the zener acts as a regulator or not??
 - Use Thevenin Theorem
 - See example
- If *V_{TH}*<*V_Z*, regulation does not occur.

Voltage Regulator....

- Referring to zener I-V charateristic curve, if the voltage across the zener diode zener is between 0-*V_z*, the zener diode is operating in the reverse bias region, thus it DOES NOT functioned as a regulator.
- V_{TH} must at least the same value as $V_Z (V_{TH} \ge V_Z)$ so that the diode CAN function as a voltage regulator because it is operating in reverse breakdown region.


Zener I-V Charateristic


Zener Diode Regulator

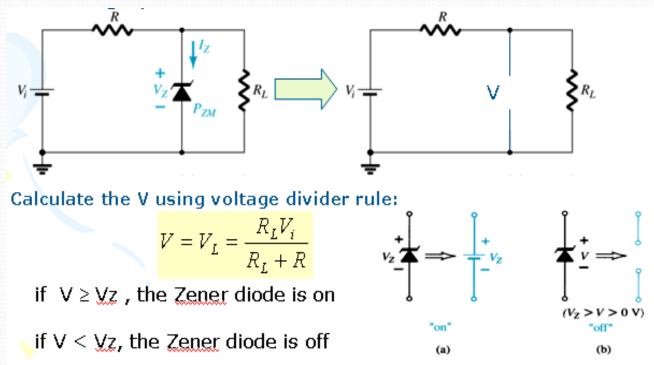
In this simple illustration of zener regulation circuit, the zener diode will "adjust" its impedance based on varying input voltages and loads (R_L) to be able to maintain its designated zener voltage.

Zener current will increase or decrease directly with voltage input changes. The zener current will increase or decrease inversely with varying loads. Again, the zener has a finite range of operation.

Thevenin Equivalent Circuit

Examples of zener as voltage regulator

<u>Cases in Zener</u> <u>Regulator Circuits</u>


- Three types of Zener analysis
 - Fixed V_S and R_L
 - Fixed V_s and variable R_L
 - Variable V_S and fixed R_L

- Fixed V_s and R_L

The applied dc voltage is fixed, as the load resistor.

The analysis :

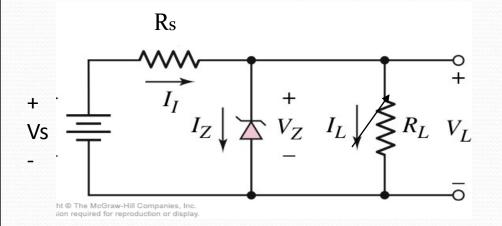
1. Determine the state of the Zener diode by removing it from the network and calculating the voltage across the resulting open circuit.

2. Substitute the appropriate equivalent circuit and solve for the desired unknowns.

- For the on state diode, the voltages across parallel elements must be the same.

$$V_L = V_Z$$

The Zener diode current is determined by KCL:


$$I_{z} = I_{R} - I_{L}$$

The power dissipated by the Zener diode is determined by:

$$P_z = V_z I_z$$

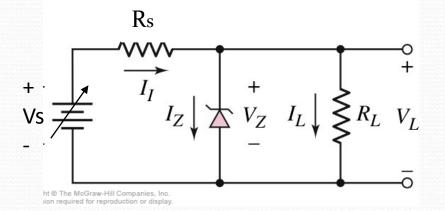
- For the off state diode, the equivalent circuit is open-circuit.

- Fixed V_S and Variable R_L

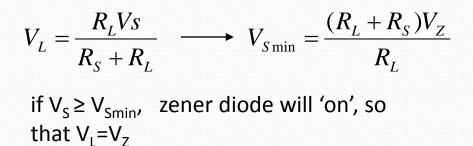
Step 1- get the R_{Lmin} so that zener is on.

$$V_L = \frac{R_L V s}{R_S + R_L} \longrightarrow R_{L\min} = \frac{R_S V_Z}{V_S - V_Z}$$

- if $R_L \ge R_{Lmin}$, zener diode 'on', so that $V_L = V_Z$


Step 2: Calculate the I_z using KCL: 2 condition

1. If R_{Lmin} , then I_{Lmax} and I_{Zmin} because of constant I_1 2. If R_{Lmax} , then I_{Lmin} and I_{Zmax}


$$I_{Z\min or \max} = I_{1\text{constant}} - I_{L\max or \min}$$
where
$$I_{L\max} = \frac{V_Z}{R_{L\min}} \quad \text{or} \quad R_{L\max} = \frac{V_Z}{I_{L\min}}$$

$$I_1 = \frac{V_S - V_Z}{R_S}$$

- Variable V_S and fixed R_L

Step 1- get the V_{Smin} so that zener is on.

Step 2: Calculate the I_z using KCL: 2 condition 1. if V_{Smin}, then I_{1min} and I_{zmin} because of constant I_L 2. if V_{Smax}, thenI_{1max} and I_{zmax}