AMPLIFIERS

Bipolar Junction Transistors

- It can be use as amplifier and logic switches.
- BJT consists of three terminal:
 - \rightarrow collector : C
 - \rightarrow base : B
 - →emitter : E
- Two types of BJT : pnp and npn

TRANSISTOR CONSTRUCTION

- 3 layer semiconductor device consisting:
 - 2 n- and 1 p-type layers of material
 > npn transistor
 - 2 p- and 1 n-type layers of material
 >pnp transistor
- The term bipolar reflects the fact that holes and electrons participate in the injection process into the oppositely polarized material

Position of the terminals and symbol of BJT.

TRANSISTOR CURRENTS

 I_c =the collector current I_B = the base current I_E = the emitter current -The arrow indicates the direction of the emitter current:

pnp: $E \rightarrow B$ npn: $B \rightarrow E$

TRANSISTOR OPERATION

• One p-n junction of a transistor is reverse-biased, whereas the other is forward-biased.

 Both biasing potentials have been applied to a pnp transistor and resulting majority and minority carrier flows indicated. Majority carriers can cross the reversebiased junction because the injected majority carriers will appear as minority carriers in the n-type material.

• Applying KCL to the transistor :

 $I_E = I_C + I_B$

The comprises of two components – the majority and minority carriers

$$I_{C} = I_{Cmajority} + I_{COminority}$$

 $I_{CO} - I_C$ current with emitter terminal open and is called leakage current.

ASSGINMENT QUESTION:

Explain transistor as an amplifier.
Why common emitter configuration is mostly used?

COMMON-BASE CONFIGURATION

 Common-base terminology is derived from the fact that the :

- base is common to both input and output of the configuration.

 All current directions will refer to conventional (hole) flow and the arrows in all electronic symbols have a direction defined by this convention.

pпp

npn

- To describe the behavior of common-base amplifiers requires two set of characteristics:
 - Input or driving point characteristics.
 - Output or collector characteristics

The output characteristics has 3 basic regions:

Active	Saturation	Cut-off
region	region	region
 IE increased, Ic increased BE junction forward bias and CB junction reverse bias Refer to the graf, Ic ≈ IE Ic not depends on VcB Suitable region for the transistor working as amplifier 	 BE and CB junction is forward bias Small changes in VcB will cause big different to Ic The allocation for this region is to the left of VcB = 0 V. 	 Region below the line of IE=0 A BE and CB is reverse bias no current flow at collector, only leakage current

 In the dc mode the level of I_c and I_E due to the majority carriers are related by a quantity called alpha

$$\alpha = \frac{\mathbf{I_C}}{\mathbf{I_E}}$$
$$|_{C} = \alpha|_{E} + |_{CBO}$$

- It can then be summarize to $I_{C} = \alpha I_{E}$ (ignore I_{CBO} due to small value)
- For ac situations where the point of operation moves on the characteristics curve, an ac alpha defined by

$$\alpha = \frac{\Delta I_{\rm C}}{\Delta I_{\rm E}}$$

• Proper biasing CB configuration in active region by approximation $I_c \approx I_E$ ($I_B \approx 0$ uA)

TRANSISTOR AS AN AMPLIFIER

COMMON-EMITTER CONFIGURATION

- It is called common-emitter configuration since :
 - emitter is common or reference to both input and output terminals.
 - emitter is usually the terminal closest to or at ground

Proper Biasing common-emitter configuration in active region

Input characteristics for a common-emitter NPN transistor
Output characteristics for a common-emitter npn transistor

RELATIONSHIP ANALYSIS BETWEEN A AND B

/

CASE 2 known : $\alpha = \frac{I_{c}}{I_{E}} \Rightarrow I_{E} = \frac{I_{c}}{\alpha}$ (2) known : $\beta = \frac{I_{c}}{I_{B}} \Rightarrow I_{B} = \frac{I_{c}}{\beta}$ (3) subtitute (2) and (3) into (1) we get,

 $\alpha = \frac{\beta}{\beta + 1}$ $\beta = \frac{\alpha}{1 - \alpha}$ and

 The input characteristic of commoncollector configuration is similar with common-emitter. configuration.

 Common-collector circuit configuration is provided with the load resistor connected from emitter to ground.

Notation and symbols used with the common-collector configuration: (a) pnp transistor ; (b) npn transistor.

TRANSISTOR TERMINAL IDENTIFICATION

R-C COUPLED AMPLIFIERS

RC COUPLED AMPLIFIER

FREQUENCY RESPONSE of R-C COUPLED AMPLIFIERS

